18th International Flow Measurement Conference

The Impact of Geometric Parameters of a S-type Pitot tube on the Flow Velocity Measurement at Smoke-stacks

Woong Kang, Nguyen Doan Trang*, Yong Moon Choi, Saeng Hee Lee

Korea Research Institute of Standards and Science *University of Science and Technology

Contents

Experimental results in KRISS

y Conclusion

Korea Greenhouse Gas Emission Inventory

 High proportion (90%) of greenhouse gas emissions arising from the energy and industrial fields such as heavy / petrochemical / semiconductor and power plant

Continuous Emission Monitoring System

 Directly measure GHG emissions(E) by monitoring concentrations(C_i) and volumetric flow rate(Q) of an exhaust gas

$$E_{CEMS} = \sum_{i=1}^{N} (C_{5min,i} \times Q_{5min,i}) \times \frac{M_{gas}}{MV})$$

CEMS (Tier 4) by IPCC guidelines, EPA

Continuous Emission Monitoring System

 Directly measure GHG emissions(E) by monitoring concentrations(C_i) and volumetric flow rate(Q) of an exhaust gas

$$E_{CEMS} = \sum_{i=1}^{N} (C_{5min,i} \times Q_{5min,i}) \times \frac{M_{gas}}{MV}) \xrightarrow{\text{CEMS (Tier 4)}}_{\text{by IPCC guidelines, EPA}}$$

$$Q_{5min} = \overline{V} \times \frac{\pi D^2}{4} \times \frac{P_s}{760} \times \frac{273.15}{T_s} \times (1 - x_w) \times t \xrightarrow{\text{Volume Flowrate}}_{\text{By EPA method 2,4}}$$

$$V: \text{flow velocity in the stack gas(m/s)}$$

KRI2S

Instruments for Stack Flow Velocity in KOREA

S-Type Pitot tube

- Large pressure orifices(Φ=5~10mm) & Strong tubes for high dust environments like industry stack (ISO 10780, KS M9429, EPA method2)
- Measurement differential pressure between an impact(total pressure) and wake orifice(static pressure) based on Bernoulli equation

$$V = C_{P,S} \sqrt{\frac{2\Delta P}{\rho}}$$

- V : flow velocity in the stack gas(m/s) $C_{P,S} : \text{S type Pitot tube coefficient}$ $\Delta P : \text{differential pressure between}$ impact and wake orifice (Pa)
- ho : density of the stack gas (*kg/m*³)

Calibration for S Pitot Tube Coefficient (C_p)

• Determination by comparing the differential pressure of standard pitot tube and S-type Pitot tube

$$C_{P,S\cdot type} = C_{P,Std} \left(\frac{\Delta P_{Std}}{\Delta P_{S\cdot type}} \right)$$

 $C_{p,s-type}$: S-type Pitot tube coefficient $C_{p,std}$: Stadard Pitot tube coefficient

 ΔP_{s-type} : differential pressure of S-type Pitot tube ΔP_{std} : differential pressure of Standard tube

Calibration for S Pitot Tube Coefficient (C_p)

• Determination by comparing the differential pressure of standard pitot tube and S-type Pitot tube

$$C_{P,S\cdot type} = C_{P,Std} \left(\frac{\Delta P_{Std}}{\Delta P_{S\cdot type}} \right)$$

 $C_{p,s-type}$: S-type Pitot tube coefficient $C_{p,std}$: Stadard Pitot tube coefficient

 ΔP_{s-type} : differential pressure of S-type Pitot tube ΔP_{std} : differential pressure of Standard tube

CALIBRATION RESULTS

On-site Measurement

 S-type Pitot tube is usually installed and inserted in harsh environment such as tall stack height and high gas temperature

S-type Tube for Smokestack

• When S-type Pitot tube install in the stack, there could be yaw, pitch angle misalignment and velocity change.

S-type Tube for Smokestack

- Flow velocity of emission gas can be altered due to the unstable process in particular industrial condition of plant
- Yaw angle misalignment can occur during installation of S-type Pitot tube from outside of the stack due to the difficulty of observation
- Pitch angle misalignment of S-type Pitot tube can result due to the deflection of the long S-type Pitot tube in large diameter stacks.

S-type Tube for Smokestack

- When S-type Pitot tube install in the stack, there could be yaw, pitch angle misalignment and velocity change.
- But, one average calibration coefficient of S-type Pitot tube was used.

What is Ideal S-Type Pitot tube ?

 Linearity, Repeatability of S-type Pitot tube coefficient in the used range of Reynolds number

Less sensitivity to the effect of yaw and pitch angle misalignment

Standardization of S-Type Pitot tube

INTERNATIONAL STANDARD

Stationary source emissions — Measurement of velocity and volume flowrate of gas streams in ducts

Émissions de sources fixes — Mesurage de la vitesse et du débit-volume des courants gazeux dans des conduites

Recommended Configuration of S Pitot tube

International Organization for Standardization	ASIA	Control States Environmental Protection Agency	
ISO 10780	ASTM D3796(Ref. 1)	EPA	
External diameter of leg (D) : 4 mm to 10 mm Distance between the base of each leg of the Pitot tube and its face-opening plane : $1.05D \le L \le 10D$	Bending a 45° angle on the end of 0.95 cm stainless steel tube The Pitot tube's length : 0.6 m \leq PL \leq 3.0 m	External diameter of leg (D) : 4.8 mm to 9.5 mm Distance between the base of each leg of the Pitot tube and its face-opening plane : $1.05D \le L \le 1.50D$	
This distance shall be equal for each leg	Cutting is parallel to the main body of the tube	This distance shall be equal for each leg	
	Bending angle		

Configuration of S-type Pitot tube

• S-type Pitot tube KRISS used

Contents

S-type Pitot tube in Smokestack

y Conclusion

Research objective

 Evaluate the effect of various geometries of S-type Pitot tube on the Stype Pitot tube coefficients including the sensitivity to velocity change, pitch and yaw angle misalignments

 \rightarrow Determine the optimal geometry of the S-type Pitot tube to improve the accuracy of the velocity measurement in the real stack

Parameter #1: Distance between leg base and facing-opening plane (L) - ISO: 1.05D \leq L \leq 10D, EPA: 1.05D \leq L \leq 1.5D \rightarrow L = 1.05D, 1.6D, 3D

Parameter #2: Bending Angle of opening parts - ASTM: 45° (KRISS S Pitot = 30 °) $\rightarrow \alpha = 15^{\circ}, 30^{\circ}, 45^{\circ}$ Bending angle(α) Distance between each leg base and facing-opening plane (L)

Configuration of S-type Pitot tube

• S-type Pitot tube KRISS used

S-type Pitot tube Manufacturing

• How to manufacture S-type Pitot tube model for our designs?

L =1.05D, α = 30° L = 1.6D, α = 30°


```
L = 3D, \alpha = 30°
```

• 3D Printing (SLA, Streolithograhpy)

- focusing an ultraviolet (UV) laser on to a vat of photopolymer resin with elevator

3D Printing for S-type Pitot tube

• 3D Printing S-type Pitot tube for our design(Daejeon Techno-park)

Model	ATOMm-4000	
Equipped Laser	Solid state laser 400mW 40KHz	
Scanning Method	Digital (TSS4)	
Laser Warranty Period	1 year	
Maximum Scanning Speed	30,000mm/sec	
Laser Diameter	0.10 - 0.60mm (automatically changeable)	
Maximum Model Size	400×400×300mm	
Z Table	Minimum layer pitch 25µm *depends on the resin used	
Recoater	Blade recoater	
Resin Surface Control	Balloon	
Power Supply	AC100V×1 Single phase 15A	
Equipment Dimension	Approx.W1565×D1050×H1860mm	
Equipment Weight	Approx.550kg (not including resin)	
Software	C-Sirius	
PC OS	Windows 7	
Operation	English/ Japanese	

Windtunel experiments

Particle Image Velocimetry(PIV)

- Quantitative visualization of flow phenomenon around S-type Pitot tube
- Time-resolved laser (20mJ), High-speed camera(3200 fps), Time interval
 - = 1ms between two-consequent velocity image

Particle Image Velocimetry(PIV)

Field of view was 150 mm x 100 mm with 16 X 16 pixels 50% overlaps
5000 instantaneous PIV images were acquired with cross correlation algorithm

Contents

S-type Pitot tube in Smokestack

v Conclusion

Verification of 3D Printing model

 Compare Cp distribution according to velocity change for 3D printing model and real S-type Pitot tube(Steel)

• Two pitot tubes show almost similar results in yaw and pitch angle change

Effect of velocity changes on Cp

Compare L=1.6D models (a = 15 Deg., 30 Deg. and 45 Deg.)

 α = 15°, L = 1.6D

 α = 45°, L = 1.6D

$$C_{P,S\cdot type} = C_{P,Std} \left(\frac{\Delta P_{Std}}{\Delta P_{S\cdot type}} \right)$$

 $C_{p,s-type}$: S-type Pitot tube coefficient $C_{p,std}$: Stadard Pitot tube coefficient $C_{p,std}$

 ΔP_{s-type} : differential pressure of S-type Pitot tube ΔP_{std} : differential pressure of Standard tube

Effect of velocity changes on Cp

 The a=45°(L=1.6D) S Pitot has Cp larger than others 4%, Cp is increasing as incoming velocity increases up 15 m/s

L=1.6D, a=30° Model(PIV)

• Flow phenomenon around S-type Pitot tube

• Due to complicated geometry between the impact and wake orifices, the separated flows are developed to a vortical structure behind orifices

L=1.6D, a=45° Model(PIV)

• Flow phenomenon around S-type Pitot tube (L=1.6D, $a=45^{\circ}$)

 Separated flow from wake orifice(downstream) were less developing due to short distance between two orifice and gradual change of curved surface compared to 30 deg model.

L=1.6D a=30°vs a=45°

 Separated flow from wake orifice(downstream) were less developing due to short distance between two orifices and gradual change of curved surface
 → Cp,s increased (45 deg)

Effect of velocity changes on Cp

 actual contact distance of the flow between the two orifices is more important than the distance L → Effective length(eL)

<i>L</i> (mm)	α (°)	eL (mm)	eL/D
	15	10.16	1.06
1.05D	30	6.54	0.68
	45	3.16	0.32
1.6D	15	20.68	2.16
	30	15.90	1.66
	45	8.76	0.92
3D	15	47.64	4.98
	30	41.82	4.38
	45	26.64	2.78

Uncertainty of Cp for S-type Pitot tube models

• Uncertainty can be calculated by the standard deviation and the difference with ISO 10780's Cp value (0.84, recommended)

Uncertainty of Cp for S-type Pitot tube models

- Uncertainty of the S-type Pitot tube coefficients decreases as the effective length(eL/D) increases.
- the S-type Pitot tube models with long effective lengths have more constant distributions of the S-type Pitot tube coefficients with respect to the velocity changes

5

L=1.6D, a=30° (Yaw=0°) PIV

• Flow phenomenon around S-type Pitot tube (L=1.6D, 30 Deg.)

• Each vortical structures from impact and wake orifices are observed

L=1.6D, a=30° (Yaw=-20°) PIV

• Flow phenomenon around S-type Pitot tube (L=1.6D, **30 Deg.**)

• No interference between the separated flow from the impact orifice and the flows near the wake orifice due to the long distance between the two orifices.

L=1.6D, a=45° (Yaw=-20°) PIV

• Flow phenomenon around S-type Pitot tube (L=1.6D, **45 Deg.**)

- Separated flow from impact orifice(upstream) interfere with vortical structures of wake orifices(downstream) due to the proximity of two orifices
- Actual contact distance of the flow between the two orifices is also an important parameter

L=1.6D, $a=30^{\circ}$ vs $a=45^{\circ}$ (Yaw angle)

- When vortical structure behind the wake orifice were interfered with upstream separated flow, lower pressure near wake orifice
 - \rightarrow Cp,s deceresed (45 deg)

L=1.6D, 30 Deg (Yaw = -20 Deg)

L=1.6D, 45 Deg (Yaw= - 20 Deg)

- To quantify the effects of the geometry of models on the S-type Pitot tube coefficients under yaw angle misalignments,
- \rightarrow Error index $I_{yaw\,\,error}$ was defined by the ratio of area between yaw curves

- To quantify the effects of the geometry of models on the S-type Pitot tube coefficients under yaw angle misalignments,
- \rightarrow Error index I_{yaw error} was defined by the ratio of area between yaw curves

 Error index closed to the 1 indicates that the S-type Pitot tube models were less affected by the yaw angle misalignments.

• Yaw angle effect for L=1, 1.6 and 3D, $a=15^{\circ}$, 30° and 45°)

- eL/D
- The error index of the S-type Pitot tube models becomes close to 1 as the effective length, eL/D, increases.
- S-type Pitot tube models with long effective lengths are less affected by the yaw angle misalignments

KRISS

 To quantify the effects of the geometry of models on the S-type Pitot tube coefficients under Pitch angle misalignments, Error index I I_{pitch error} was defined by the ratio of area between pitch normalized curves

 To quantify the effects of the geometry of models on the S-type Pitot tube coefficients under Pitch angle misalignments, Error index I I_{pitch error} was defined by the ratio of area between pitch normalized curves

• Pitch angle effect for L=1, 1.6 and 3D, $a=15^{\circ}$, 30° and 45°)

• Error index I (Ratio of error area)

eL/D

• The S-type Pitot tube coefficients were not correlated with the error index, which shows almost similar values of in the negative and positive pitch angle.

Conclusion

- S-type Pitot tube is mainly applied to measurement stack velocity for Smokestack in KOREA
- No detailed guidelines pertaining to the S-type Pitot tube geometry considering accurate and reliable measurements in the ISO, EPA and ASTM international standards
- Various geometric parameters on S-type Pitot tube coefficients with yaw and pitch misalignment were investigated by 3D printing and wind tunnel experiments

Conclusion

- S-type Pitot tube is mainly applied to measurement stack velocity for Smokestack in KOREA
- No detailed guidelines pertaining to the S-type Pitot tube geometry considering accurate and reliable measurements in the ISO, EPA and ASTM international standards
- Various geometric parameters on S-type Pitot tube coefficients with yaw and pitch misalignment were investigated by 3D printing and wind tunnel experiments
- The S-type Pitot tube with a long effective length has low uncertainty and constant distributions of the S-type Pitot tube coefficients
- S-type Pitot tube models with long effective lengths are less affected by the yaw angle misalignments, But in the real smokestack, it could be non-practical.
- The S-type Pitot tube coefficients were not correlated with the error index, which shows almost similar values of in the negative and positive pitch angle.

Thank you for your kind attention!

